论文标题

具有无缝可调各向异性的Spinodoid超材料的数据驱动拓扑优化

Data-driven topology optimization of spinodoid metamaterials with seamlessly tunable anisotropy

论文作者

Zheng, Li, Kumar, Siddhant, Kochmann, Dennis M.

论文摘要

我们提出了一个两尺度拓扑优化框架,用于设计具有优化弹性响应的宏观体的设计,这是通过微观上的空间变化的蜂窝结构实现的。在微观上的细胞网络(受旋缺链分解过程中形成的自然微观结构的启发)的选择的旋转拓扑结构允许无缝的空间分级以及可调的弹性各向异性,并且由与下面的豪斯豪斯豪斯式豪斯式豪斯山脉随机场相关联的一组少数设计参数。宏观边界值问题由有限元素离散,除了位移场不连续插值微观设计参数。通过假设尺度分离,宏观上的局部本构行为被确定为基于局部设计参数的微观结构的均质弹性响应。作为与经典的Fe $^2 $ -Type方法的背离,我们使用深层神经网络替换了由数据驱动的替代模型代替昂贵的微观均质化,该模型使用深神经网络将其准确有效地将设计参数映射到有效的弹性张量中。该模型是根据有限元素从数值同质化获得的均质刚度数据进行训练的。作为额外的好处,机器学习设置可以自动差异化,因此可以精确计算敏感性(优化问题所需的),而无需数值衍生品 - 这种策略具有远远超出弹性刚度的策略。因此,该框架为基于数据驱动的替代模型提供了多尺寸拓扑优化的新机会。

We present a two-scale topology optimization framework for the design of macroscopic bodies with an optimized elastic response, which is achieved by means of a spatially-variant cellular architecture on the microscale. The chosen spinodoid topology for the cellular network on the microscale (which is inspired by natural microstructures forming during spinodal decomposition) admits a seamless spatial grading as well as tunable elastic anisotropy, and it is parametrized by a small set of design parameters associated with the underlying Gaussian random field. The macroscale boundary value problem is discretized by finite elements, which in addition to the displacement field continuously interpolate the microscale design parameters. By assuming a separation of scales, the local constitutive behavior on the macroscale is identified as the homogenized elastic response of the microstructure based on the local design parameters. As a departure from classical FE$^2$-type approaches, we replace the costly microscale homogenization by a data-driven surrogate model, using deep neural networks, which accurately and efficiently maps design parameters onto the effective elasticity tensor. The model is trained on homogenized stiffness data obtained from numerical homogenization by finite elements. As an added benefit, the machine learning setup admits automatic differentiation, so that sensitivities (required for the optimization problem) can be computed exactly and without the need for numerical derivatives - a strategy that holds promise far beyond the elastic stiffness. Therefore, this framework presents a new opportunity for multiscale topology optimization based on data-driven surrogate models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源