论文标题
随机实验设计的精制边界
Refined bounds for randomized experimental design
论文作者
论文摘要
实验设计是在给定集合中选择样品的一种方法,以便获得给定标准的最佳估计器。在线性回归的上下文中,已经得出了几种最佳设计,每个设计都与不同的标准相关联:均方根误差,鲁棒性,\ emph {etc}。计算此类设计通常是一个NP硬性问题,而是可以依靠凸松弛,该凸松弛考虑了样本上的概率分布。尽管贪婪的策略和圆形程序受到了很多关注,但几乎没有研究最佳分布中的直接抽样。在本文中,我们提出了有关E和G-最佳设计的随机策略的理论保证。为此,我们使用内在维度的精制版本为随机矩阵的特征值开发了新的浓度不平等,使我们能够量化此类随机策略的性能。最后,我们通过实验证明了分析的有效性,并特别注意应用于线性斑块最佳手臂识别问题的G-最佳设计。
Experimental design is an approach for selecting samples among a given set so as to obtain the best estimator for a given criterion. In the context of linear regression, several optimal designs have been derived, each associated with a different criterion: mean square error, robustness, \emph{etc}. Computing such designs is generally an NP-hard problem and one can instead rely on a convex relaxation that considers probability distributions over the samples. Although greedy strategies and rounding procedures have received a lot of attention, straightforward sampling from the optimal distribution has hardly been investigated. In this paper, we propose theoretical guarantees for randomized strategies on E and G-optimal design. To this end, we develop a new concentration inequality for the eigenvalues of random matrices using a refined version of the intrinsic dimension that enables us to quantify the performance of such randomized strategies. Finally, we evidence the validity of our analysis through experiments, with particular attention on the G-optimal design applied to the best arm identification problem for linear bandits.