论文标题
通过拟合动力学模型来间接测量肝药物清除率
Indirect Measurement of Hepatic Drug Clearance by Fitting Dynamical Models
论文作者
论文摘要
我们为无法直接测量的人类生物量的基于信号处理的间接测量方法。我们通过专注于通过红霉素呼气测试(EBT)获得临床获得的呼吸生物膜样品来估计肝酶和药物转运蛋白活性来开发该方法:注入了一小剂量的无线电标记药物,并在呼出的呼吸中反复测量无线电标记的CO $ _2 $的随后含量。分析结果时间序列。为了模拟EBT,我们开发了一种14个可变化的非线性减少阶动力学模型,该模型描述了人体中药物及其代谢物的行为,足以捕获所有感兴趣的生物学现象。基于这种耦合的非线性普通微分方程(ODE)的系统,我们将测量问题视为反问题:我们从测量的EBT时间序列中估算了个别患者的ode参数。然后,这些估计值对感兴趣的肝活动进行了测量。由于ODES僵硬,并且需要正规化问题以确保稳定收敛,因此很难估计参数。我们开发了一个正式的操作员框架,以捕获和处理当前的特定非线性性,并执行扰动分析以建立估计程序及其解决方案的属性。该方法的开发需要在超级计算中心进行150,000个CPU小时,并且单个生产运行需要24小时。我们在未来对弱势患者(例如肿瘤学,肾脏学或儿科)的药物精确剂量的情况下介绍和分析该方法,以确保有效性并避免毒性。
We present an indirect signal processing-based measurement method for biological quantities in humans that cannot be directly measured. We develop the method by focusing on estimating hepatic enzyme and drug transporter activity through breath-biopsy samples clinically obtained via the erythromycin breath test (EBT): a small dose of radio-labeled drug is injected and the subsequent content of radio-labeled CO$_2$ is measured repeatedly in exhaled breath; the resulting time series is analyzed. To model EBT we developed a 14-variable non-linear reduced order dynamical model that describes the behavior of the drug and its metabolites in the human body well enough to capture all biological phenomena of interest. Based on this system of coupled non-linear ordinary differential equations (ODEs) we treat the measurement problem as inverse problem: we estimate the ODE parameters of individual patients from the measured EBT time series. These estimates then provide a measurement of the liver activity of interest. The parameters are hard to estimate as the ODEs are stiff and the problem needs to be regularized to ensure stable convergence. We develop a formal operator framework to capture and treat the specific non-linearities present, and perform perturbation analysis to establish properties of the estimation procedure and its solution. Development of the method required 150,000 CPU hours at a supercomputing center, and a single production run takes CPU 24 hours. We introduce and analyze the method in the context of future precision dosing of drugs for vulnerable patients (e.g., oncology, nephrology, or pediatrics) to eventually ensure efficacy and avoid toxicity.