论文标题
量子热力学的零量法在强耦合时:“平衡”,而不是“相等温度”
Zeroth Law in Quantum Thermodynamics at Strong Coupling: `in Equilibrium', not `Equal Temperature'
论文作者
论文摘要
热力学的零定律涉及以“相等温度”(ET)或“平衡”(等式)条件表示的传递性关系(三个对象之间的成对)。在传统的热力学中,以消失的弱系统浴耦合为条件,这两个条件通常被认为是等效的。在这项工作中,我们表明,对于强耦合时热力学,它们是不相等的:即,两个系统可以保持平衡,但具有不同的有效温度。高斯量子系统的最新结果\ cite {neqfe}表明,有效温度$ t^{*} $可以始终定义在系统的非平衡进化过程中,但是由于将相互作用的能量包括在平衡之后,该系统的$ t^*$略高于浴缸温度$ t _ {bash bath bath bath bath bath bath bath bath bath bath bath bath bath bath bath bath bath bath bath bath bath teviers coutiation coutiation。第二个对象,在温度下与相同的浴缸$ t _ {\ textsc {b}} $在温度下的浴缸相同的平衡温度与第一个对象没有相同的平衡温度。因此,$ et \ neq eq $用于强耦合热力学。然后,我们研究了两个对象1和2的动力平衡条件,并与公共浴室$ b $强烈耦合,每个对象具有不同的平衡有效温度。我们表明这是可能的,并证明了这种配置下的广义波动 - 散落关系的存在。这肯定“平衡”是一个有效的,也许是更基本的概念,在强耦合时应基于量子热力学的Zeroth定律应基于。只有当系统浴耦合变得消失时,热力学关系中出现的“温度”才能普遍定义并具有更好的物理意义。
The zeroth law of thermodynamics involves a transitivity relation (pairwise between three objects) expressed either in terms of `equal temperature' (ET), or `in equilibrium' (EQ) conditions. In conventional thermodynamics conditional on vanishingly weak system-bath coupling these two conditions are commonly regarded as equivalent. In this work we show that for thermodynamics at strong coupling they are inequivalent: namely, two systems can be in equilibrium and yet have different effective temperatures. A recent result \cite{NEqFE} for Gaussian quantum systems shows that an effective temperature $T^{*}$ can be defined at all times during a system's nonequilibrium evolution, but because of the inclusion of interaction energy, after equilibration the system's $T^*$ is slightly higher than the bath temperature $T_{\textsc{b}}$, with the deviation depending on the coupling. A second object coupled with a different strength with an identical bath at temperature $T_{\textsc{b}}$ will not have the same equilibrated temperature as the first object. Thus $ET \neq EQ $ for strong coupling thermodynamics. We then investigate the conditions for dynamical equilibration for two objects 1 and 2 strongly coupled with a common bath $B$, each with a different equilibrated effective temperature. We show this is possible, and prove the existence of a generalized fluctuation-dissipation relation under this configuration. This affirms that `in equilibrium' is a valid and perhaps more fundamental notion which the zeroth law for quantum thermodynamics at strong coupling should be based on. Only when the system-bath coupling becomes vanishingly weak that `temperature' appearing in thermodynamic relations becomes universally defined and makes better physical sense.