论文标题
结肠镜检查息肉检测:从医疗报告图像到实时视频的域适应
Colonoscopy Polyp Detection: Domain Adaptation From Medical Report Images to Real-time Videos
论文作者
论文摘要
结肠镜检查视频中的自动结直肠息肉检测是一项基本任务,引起了很多关注。大规模视频数据集中的息肉区域手动注释的息肉区域是耗时且昂贵的,这限制了深度学习技术的发展。妥协是通过使用标记的图像并在结肠镜检查视频上推断目标模型训练目标模型。但是,基于图像的培训和基于视频的推断(包括领域差异,缺乏积极样本和时间平滑度)之间存在几个问题。为了解决这些问题,我们提出了一个图像视频 - 关节息肉检测网络(IVY-NET),以解决历史医学报告和实时视频的结肠镜检查图像之间的域间隙。在我们的IVY-NET中,通过在像素级别组合正面图像和负面视频框架来生成训练数据,从而可以学习域的自适应表示并增强阳性样品。同时,提出了时间连贯正则(TCR),以在相邻帧中对特征级别的平滑约束,并通过未标记的结肠镜检查视频改善息肉检测。为了进行评估,收集了一个新的大型结肠镜检查息肉数据集,其中包含3056张图像,其中包括889名阳性患者的历史医学报告和69名患者的7.5小时视频(28个阳性)。收集到的数据集的实验表明,我们的Ivy-NET在结肠镜检查视频上实现了最新的结果。
Automatic colorectal polyp detection in colonoscopy video is a fundamental task, which has received a lot of attention. Manually annotating polyp region in a large scale video dataset is time-consuming and expensive, which limits the development of deep learning techniques. A compromise is to train the target model by using labeled images and infer on colonoscopy videos. However, there are several issues between the image-based training and video-based inference, including domain differences, lack of positive samples, and temporal smoothness. To address these issues, we propose an Image-video-joint polyp detection network (Ivy-Net) to address the domain gap between colonoscopy images from historical medical reports and real-time videos. In our Ivy-Net, a modified mixup is utilized to generate training data by combining the positive images and negative video frames at the pixel level, which could learn the domain adaptive representations and augment the positive samples. Simultaneously, a temporal coherence regularization (TCR) is proposed to introduce the smooth constraint on feature-level in adjacent frames and improve polyp detection by unlabeled colonoscopy videos. For evaluation, a new large colonoscopy polyp dataset is collected, which contains 3056 images from historical medical reports of 889 positive patients and 7.5-hour videos of 69 patients (28 positive). The experiments on the collected dataset demonstrate that our Ivy-Net achieves the state-of-the-art result on colonoscopy video.