论文标题
使用神经网络的空间高斯过程模型的快速协方差参数估计
Fast covariance parameter estimation of spatial Gaussian process models using neural networks
论文作者
论文摘要
高斯流程(GPS)是空间引用数据的流行模型,并允许描述性语句,在新位置进行预测以及对新领域的仿真。通常,一些参数足以参数化协方差函数,并且最大似然(ML)方法可用于从数据估算这些参数。但是,ML方法在计算上是要求的。例如,在局部可能性估计的情况下,即使是适度尺寸的窗口上的拟合协方差模型也会淹没用于数据分析的典型计算资源。这种限制激发了使用神经网络(NN)方法近似ML估计的想法。我们训练NNS将中等大小的空间场或变量图作为输入,并返回范围和信号协方差参数。一旦训练,NNS提供的估计值与ML估计相比具有相似的准确性,并以100倍或更高的速度加速估计。尽管我们专注于由气候科学应用所激发的特定协方差估计问题,但这项工作很容易扩展到其他,更复杂的空间问题,并为在计算统计中使用机器学习的使用提供了概念证明。
Gaussian processes (GPs) are a popular model for spatially referenced data and allow descriptive statements, predictions at new locations, and simulation of new fields. Often a few parameters are sufficient to parameterize the covariance function, and maximum likelihood (ML) methods can be used to estimate these parameters from data. ML methods, however, are computationally demanding. For example, in the case of local likelihood estimation, even fitting covariance models on modest size windows can overwhelm typical computational resources for data analysis. This limitation motivates the idea of using neural network (NN) methods to approximate ML estimates. We train NNs to take moderate size spatial fields or variograms as input and return the range and noise-to-signal covariance parameters. Once trained, the NNs provide estimates with a similar accuracy compared to ML estimation and at a speedup by a factor of 100 or more. Although we focus on a specific covariance estimation problem motivated by a climate science application, this work can be easily extended to other, more complex, spatial problems and provides a proof-of-concept for this use of machine learning in computational statistics.