论文标题
第二种变异不等式中参数识别的优化方法-II
An Optimization Approach to Parameter Identification in Variational Inequalities of Second Kind -- II
论文作者
论文摘要
本文继续进行较早的工作,并关注第二种变异不等式的参数识别的反问题,这些问题不仅处理链接到双线性形式的参数,而且重要的是,重要的是与非线性非平滑函数链接的参数。使用输出最高正方形公式在较早问题上的优化方法涉及第二种的变异不平等作为约束。在这里,我们使用非不同可优化的正则技术,在变化不平等中的非平滑部分正规化,并得出一个优化问题,该问题由正则变分方程取代了约束变异不平等。对于这种情况,研究了参数到解决图的平滑度,并给出了收敛分析和最佳条件。
This paper continues earlier work and is concerned with the inverse problem of parameter identification in variational inequalities of the second kind that does not only treat the parameter linked to a bilinear form, but importantly also the parameter linked to a nonlinear non-smooth function. The optimization approach in the earlier work on the inverse problem using the output-least squares formulation involves the variational inequality of the second kind as constraint. Here we use regularization technics of nondifferentiable optimization, regularize the nonsmooth part in the variational inequality and arrive at an optimization problem for which the constraint variational inequality is replaced by the regularized variational equation. For this case, the smoothness of the parameter-to-solution map is studied and convergence analysis and optimality conditions are given.