论文标题
相对的赫米尼亚双重功能子
The relative hermitian duality functor
论文作者
论文摘要
我们扩展到歧管$ x $上的相对常规全体模块的类别,该模块由曲线$ s $,kashiwara的Hermitian双重函数(或共轭函数)进行了参数。我们证明,该函子与共轭歧管$ \ overline x $上的类似类别相等,该类别由同一曲线参数化。作为副产品,我们介绍了常规全体性相对分布的概念。
We extend to the category of relative regular holonomic modules on a manifold $X$, parametrized by a curve $S$, the Hermitian duality functor (or conjugation functor) of Kashiwara. We prove that this functor is an equivalence with the similar category on the conjugate manifold $\overline X$, parametrized by the same curve. As a byproduct we introduce the notion of regular holonomic relative distribution.