论文标题

在一部分上的ASEP截止曲线

Cutoff profile of ASEP on a segment

论文作者

Bufetov, Alexey, Nejjar, Peter

论文摘要

本文研究了长度$ n $的一部分上的不对称简单排除过程(ASEP)的混合行为。我们的主要结果是,对于$(0,1)中的粒子密度,$ $ n^{1/3} $的总变量截止窗口为$ 1-f _ {\ mathrm {gue}},$ f _ {\ f _ {\ mathrm {\ mathrm {gue}} $是tracy-wism-wism-wism-wism-wism formation formation。这也提供了截止本身的新证明,Labbé和LaCoin早些时候显示了。我们的证明结合了耦合参数,这是关于ASEP波动的Tracy-Widom的结果,从步骤初始条件开始,而确切的代数身份来自将多物种ASEP解释为Hecke代数上的随机步行。

This paper studies the mixing behavior of the Asymmetric Simple Exclusion Process (ASEP) on a segment of length $N$. Our main result is that for particle densities in $(0,1),$ the total-variation cutoff window of ASEP is $N^{1/3}$ and the cutoff profile is $1-F_{\mathrm{GUE}},$ where $F_{\mathrm{GUE}}$ is the Tracy-Widom distribution function. This also gives a new proof of the cutoff itself, shown earlier by Labbé and Lacoin. Our proof combines coupling arguments, the result of Tracy-Widom about fluctuations of ASEP started from the step initial condition, and exact algebraic identities coming from interpreting the multi-species ASEP as a random walk on a Hecke algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源