论文标题

通过图神经网络和模仿学习的分散控制器合成分散的控制器

Synthesizing Decentralized Controllers with Graph Neural Networks and Imitation Learning

论文作者

Gama, Fernando, Li, Qingbiao, Tolstaya, Ekaterina, Prorok, Amanda, Ribeiro, Alejandro

论文摘要

由一组自主代理组成的动态系统面临着必须完成全球任务的挑战,仅依靠本地信息。尽管容易获得集中式控制器,但它们在可伸缩性和实施方面面临限制,因为它们不尊重代理网络系统所施加的分布式信息结构。考虑到很难找到最佳分散控制器,我们建议使用图形神经网络(GNN)提出一个新颖的框架,以\ emph {Learn}这些控制器。 GNN非常适合该任务,因为它们是自然分布的架构,并且具有良好的可扩展性和可传递性能。我们表明,GNNS通过模仿学习来学习适当的分散控制器,利用其置换不变性属性成功地扩展到大型团队,并在部署时间转移到看不见的情况。探索了羊群和多代理路径计划的问题,以说明GNN在学习分散控制器中的潜力。

Dynamical systems consisting of a set of autonomous agents face the challenge of having to accomplish a global task, relying only on local information. While centralized controllers are readily available, they face limitations in terms of scalability and implementation, as they do not respect the distributed information structure imposed by the network system of agents. Given the difficulties in finding optimal decentralized controllers, we propose a novel framework using graph neural networks (GNNs) to \emph{learn} these controllers. GNNs are well-suited for the task since they are naturally distributed architectures and exhibit good scalability and transferability properties. We show that GNNs learn appropriate decentralized controllers by means of imitation learning, leverage their permutation invariance properties to successfully scale to larger teams and transfer to unseen scenarios at deployment time. The problems of flocking and multi-agent path planning are explored to illustrate the potential of GNNs in learning decentralized controllers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源