论文标题

LQR辅助控制算法,用于水分分配系统中未插入的机器人机器人

An LQR-assisted Control Algorithm for an Under-actuated In-pipe Robot in Water Distribution Systems

论文作者

Kazeminasab, Saber, Jafari, Roozbeh, Banks, M. Katherine

论文摘要

为了应对大型水分配系统(WDS)中管道机器人的操作挑战,在这项研究中,为我们先前设计的机器人提出了控制算法[4]。我们的尺寸适应性机器人的机器人具有不足的模块化设计,可用于泄漏检测和质量监测。首先,机器人的非线性动态控制方程是通过两个垂直平面的定义得出的,并为机器人定义了两组状态以进行稳定和动员。为了稳定,我们计算了辅助系统矩阵,并基于线性二次调节器(LQR)控制器设计了稳定器控制器,并将其与基于比例的综合衍生物(PID)控制器组合在一起,以进行动员。在三个迭代中,在各种操作条件下,用MATLAB中的MATLAB模拟对控制器方案进行了验证。仿真结果表明,控制器可以通过将稳定状态收敛到零,并使它们保持在-25度和+25度之间,并将其保持为零,并将其保持零,并将其保持在-25度和+25度之间,并且跟踪速度为10 cm/s,30cm/s和50cm/s,这使得机器人敏捷和脱氧于管道中的速度。

To address the operational challenges of in-pipe robots in large pipes of water distribution systems (WDS), in this research, a control algorithm is proposed for our previously designed robot [4]. Our size adaptable robot has an under-actuated modular design that can be used for both leak detection and quality monitoring. First, nonlinear dynamical governing equations of the robot are derived with the definition of two perpendicular planes, and two sets of states are defined for the robot for stabilization and mobilization. For stabilization, we calculated the auxiliary system matrices and designed a stabilizer controller based on the linear quadratic regulator (LQR) controller, and combined it with a proportional-integral-derivative (PID) based controller for mobilization. The controller scheme is validated with simulation in MATLAB in various operation conditions in three iterations. The simulation results show that the controller can stabilize the robot inside the pipe by converging the stabilizing states to zero and keeping them in zero with initial values between -25 degree and +25 degree and tracking velocities of 10cm/s, 30cm/s, and 50cm/s which makes the robot agile and dexterous for operation in pipelines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源