论文标题

低排时张量的推断 - 无需进行DEBIAS

Inference for Low-rank Tensors -- No Need to Debias

论文作者

Xia, Dong, Zhang, Anru R., Zhou, Yuchen

论文摘要

在本文中,我们考虑了几种低级张量模型的统计推断。具体而言,在Tucker低级张量PCA或回归模型中,提供了达到某种可达到错误率的任何估计值,我们基于基于两介质的最小化的最新估算值的渐近分布,开发了参数张量分布的奇异子空间的数据驱动的置信区。渐近分布是在信噪比(以PCA模型)或样本大小(在回归模型中)(在回归模型中)的一些基本条件下建立的。如果参数张量进一步正交分解,我们将开发出对每个单个单数载体推断的方法和非反应理论。对于排名一张量的PCA模型,我们为主组件的一般线性形式建立了渐近分布和参数张量的每个条目的置信区间。最后,提出数值模拟以证实我们的理论发现。 在所有这些模型中,我们观察到与现有工作中许多矩阵/矢量设置不同的是,不需要证券来建立估计值的渐近分布或对低级数张量的统计推断。实际上,由于对低量张量估计的统计计算差距广泛观察到,通常需要比统计(或信息理论)限制更强的条件,以确保可以实现计算可行的估计。令人惊讶的是,这种条件``偶然地''使可行的低级张量推断而没有任何证件。

In this paper, we consider the statistical inference for several low-rank tensor models. Specifically, in the Tucker low-rank tensor PCA or regression model, provided with any estimates achieving some attainable error rate, we develop the data-driven confidence regions for the singular subspace of the parameter tensor based on the asymptotic distribution of an updated estimate by two-iteration alternating minimization. The asymptotic distributions are established under some essential conditions on the signal-to-noise ratio (in PCA model) or sample size (in regression model). If the parameter tensor is further orthogonally decomposable, we develop the methods and non-asymptotic theory for inference on each individual singular vector. For the rank-one tensor PCA model, we establish the asymptotic distribution for general linear forms of principal components and confidence interval for each entry of the parameter tensor. Finally, numerical simulations are presented to corroborate our theoretical discoveries. In all these models, we observe that different from many matrix/vector settings in existing work, debiasing is not required to establish the asymptotic distribution of estimates or to make statistical inference on low-rank tensors. In fact, due to the widely observed statistical-computational-gap for low-rank tensor estimation, one usually requires stronger conditions than the statistical (or information-theoretic) limit to ensure the computationally feasible estimation is achievable. Surprisingly, such conditions ``incidentally" render a feasible low-rank tensor inference without debiasing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源