论文标题
一种用于电子结构计算的自适应PlaneWave方法
An adaptive planewave method for electronic structure calculations
论文作者
论文摘要
我们提出了一种自适应Planewave方法,用于电子结构计算中的特征值问题。该方法结合了先验的收敛率,并将后验误差估计为更新PlaneWave离散的能量截止的有效方法,用于线性和非线性特征值问题。该方法是可控制线性特征值问题的误差,因为对于给定的所需精度,该解决方案可以有效地达到目标准确性的能量截止。此外,该方法对于电子结构计算中的非线性特征值问题特别有希望,因为它应降低自洽算法的早期迭代成本。我们提出了一些数值实验,以解决线性和非线性特征值问题。特别是,我们为使用Kohn-Sham密度功能理论(DFT)模拟的某些绝缘体和金属系统提供了电子结构计算,并提供了投影仪增强波(PAW)方法,以说明算法的效率和潜力。
We propose an adaptive planewave method for eigenvalue problems in electronic structure calculations. The method combines a priori convergence rates and accurate a posteriori error estimates into an effective way of updating the energy cut-off for planewave discretizations, for both linear and nonlinear eigenvalue problems. The method is error controllable for linear eigenvalue problems in the sense that for a given required accuracy, an energy cut-off for which the solution matches the target accuracy can be reached efficiently. Further, the method is particularly promising for nonlinear eigenvalue problems in electronic structure calculations as it shall reduce the cost of early iterations in self-consistent algorithms. We present some numerical experiments for both linear and nonlinear eigenvalue problems. In particular, we provide electronic structure calculations for some insulator and metallic systems simulated with Kohn--Sham density functional theory (DFT) and the projector augmented wave (PAW) method, illustrating the efficiency and potential of the algorithm.