论文标题
异质嵌入式SOC平台的热安全性和实时可预测性
Thermal Safety and Real-Time Predictability on Heterogeneous Embedded SoC Platforms
论文作者
论文摘要
最新的嵌入式系统设计使用高性能系统芯片(SOC),以满足现实生活中广泛使用的复杂应用的计算需求,例如飞机控制器,自动驾驶汽车,医疗设备,无人机和手持设备。现代SOC会整合多核CPU和包括GPU和DSP在内的各种类型的加速器。不受控制的热量消耗是干扰的主要来源之一,可能会对关键安全应用的可靠性和实时性能产生不利影响。目前可用于保护SOC免受过热的机制,例如频率节流或核心关闭,可能会加剧问题,因为它们会导致不可预测的延迟和截止日期。环境温度的动态变化进一步增加了解决此问题的困难。 该论文解决了由异质嵌入式SOC平台构建的实时混合临界系统中热干扰所带来的挑战。我们提出了一个具有分析时机和热模型的新型热感知系统框架,以确保在多核CPU/GPU集成SOC的热约束下安全执行实时任务。对于混合临界任务,所提出的框架在每个临界水平下的热量产生,并为环境温度变化提供不同级别的保证。此外,我们提出了一个数据驱动的热参数估计方案,该方案直接适用于使用商业货架上的多核处理器构建的MCS,以获得精确的热模型,而无需使用特殊的测量仪器或访问专有信息。已经使用真实的SOC平台评估了解决方案的实用性和有效性,我们的贡献将有助于开发具有热安全性和实时可预测性的系统。
Recent embedded systems are designed with high-performance System-on-Chips (SoCs) to satisfy the computational needs of complex applications widely used in real life, such as airplane controllers, autonomous driving automobiles, medical devices, drones, and hand-held devices. Modern SoCs integrate multi-core CPUs and various types of accelerators including GPUs and DSPs. Uncontrolled heat dissipation is one of the main sources of interference that can adversely affect the reliability and real-time performance of safety-critical applications. The mechanisms currently available to protect SoCs from overheating, such as frequency throttling or core shutdown, may exacerbate the problem as they cause unpredictable delay and deadline misses. Dynamic changes in ambient temperature further increase the difficulty of solving this problem. This dissertation addresses the challenges caused by thermal interference in real-time mixed-criticality systems built with heterogeneous embedded SoC platforms. We propose a novel thermal-aware system framework with analytical timing and thermal models to guarantee safe execution of real-time tasks under the thermal constraints of a multi-core CPU/GPU integrated SoC. For mixed-criticality tasks, the proposed framework bounds the heat generation of the system at each criticality level and provides different levels of assurance against ambient temperature changes. In addition, we propose a data-driven thermal parameter estimation scheme that is directly applicable to MCSs built with commercial-off-the-shelf multi-core processors to obtain a precise thermal model without using special measurement instruments or access to proprietary information. The practicality and effectiveness of our solutions have been evaluated using real SoC platforms and our contributions will help develop systems with thermal safety and real-time predictability.