论文标题
通过标签传播和样式转移的半监督心脏图像分割
Semi-supervised Cardiac Image Segmentation via Label Propagation and Style Transfer
论文作者
论文摘要
对心脏结构的准确分割可以帮助医生诊断疾病并改善治疗计划,这在临床实践中是高度要求的。但是,不同供应商和医疗中心之间的注释短缺以及数据的差异限制了先进的深度学习方法的性能。在这项工作中,我们提出了一种全自动方法,以分割包括左侧(LV)和右心室(RV)血池在内的心脏结构,以及MRI体积的左心室心肌(Myo)。具体而言,我们设计了一种半监督的学习方法,以通过标签传播来利用未标记的MRI序列时间范围。然后,我们利用样式转移,以减少不同中心和供应商之间的差异,以进行更健壮的心脏图像分割。我们在M&M挑战7中评估了我们的方法,在14个竞争团队中排名第二。
Accurate segmentation of cardiac structures can assist doctors to diagnose diseases, and to improve treatment planning, which is highly demanded in the clinical practice. However, the shortage of annotation and the variance of the data among different vendors and medical centers restrict the performance of advanced deep learning methods. In this work, we present a fully automatic method to segment cardiac structures including the left (LV) and right ventricle (RV) blood pools, as well as for the left ventricular myocardium (MYO) in MRI volumes. Specifically, we design a semi-supervised learning method to leverage unlabelled MRI sequence timeframes by label propagation. Then we exploit style transfer to reduce the variance among different centers and vendors for more robust cardiac image segmentation. We evaluate our method in the M&Ms challenge 7 , ranking 2nd place among 14 competitive teams.