论文标题
主要的可定义集的细菌的主要运动学公式
Principal Kinematic Formulas for Germs of Closed Definable Sets
论文作者
论文摘要
我们证明了两个主要的运动学公式,用于$ \ mathbb {r}^n $中封闭的可定义集的细菌,它们将Cauchy-Crofton公式概括为由于comte和Infinitessimer the Infinitesal Liniteal-Linateal Inematic Inematic Inematic Cormula而引起的密度。在这种情况下,我们不集成在欧几里得运动的空间上,而是在歧管$ so(n)\ times s^{n-1} $上。
We prove two principal kinematic formulas for germs of closed definable sets in $\mathbb{R}^n$, that generalize the Cauchy-Crofton formula for the density due to Comte and the infinitesimal linear kinematic formula due to the author. In this setting, we do not integrate on the space of euclidian motions, but on the manifold $SO(n) \times S^{n-1}$.