论文标题

深层散列可安全的多模式生物识别技术

Deep Hashing for Secure Multimodal Biometrics

论文作者

Talreja, Veeru, Valenti, Matthew, Nasrabadi, Nasser

论文摘要

与单峰系统相比,多模式生物识别系统具有多个优点,包括较低的错误率,更高的准确性和较大的人口覆盖率。但是,多模式系统对完整性和隐私的需求增加,因为它们必须存储与每个用户相关的多个生物特征性状。在本文中,我们为特征级融合提供了一个深度学习框架,该框架从每个用户的面部和虹膜生物识别技术中生成安全的多模式模板。我们将深层散列(二进制)技术集成到融合体系结构中,以生成强大的二进制多模式共享潜在表示。此外,我们通过将可取消的生物识别技术与安全的草图技术相结合,并将其与深度哈希框架集成在一起,采用混合安全体系结构,这使其在计算上使其在计算上以实现通过身份验证的多种生物识别技术的组合。使用多模式数据库显示了所提出的方法的功效,并且观察到,由于多种生物特征的融合,匹配性能得到了提高。此外,所提出的方法还提供了模板的可取消性和不链接性,并改善了生物识别数据的隐私性。此外,我们还使用基准数据集测试了图像检索应用程序所提出的哈希功能。本文的主要目的是开发一种整合多模式融合,深度哈希和生物识别安全性的方法,并重点介绍了来自面部和虹膜等模态的结构数据。所提出的方法绝不是可以应用于所有生物识别方式的一般生物识别安全框架,因为需要进一步的研究以将所提出的框架扩展到其他无约束的生物识别模式。

When compared to unimodal systems, multimodal biometric systems have several advantages, including lower error rate, higher accuracy, and larger population coverage. However, multimodal systems have an increased demand for integrity and privacy because they must store multiple biometric traits associated with each user. In this paper, we present a deep learning framework for feature-level fusion that generates a secure multimodal template from each user's face and iris biometrics. We integrate a deep hashing (binarization) technique into the fusion architecture to generate a robust binary multimodal shared latent representation. Further, we employ a hybrid secure architecture by combining cancelable biometrics with secure sketch techniques and integrate it with a deep hashing framework, which makes it computationally prohibitive to forge a combination of multiple biometrics that pass the authentication. The efficacy of the proposed approach is shown using a multimodal database of face and iris and it is observed that the matching performance is improved due to the fusion of multiple biometrics. Furthermore, the proposed approach also provides cancelability and unlinkability of the templates along with improved privacy of the biometric data. Additionally, we also test the proposed hashing function for an image retrieval application using a benchmark dataset. The main goal of this paper is to develop a method for integrating multimodal fusion, deep hashing, and biometric security, with an emphasis on structural data from modalities like face and iris. The proposed approach is in no way a general biometric security framework that can be applied to all biometric modalities, as further research is needed to extend the proposed framework to other unconstrained biometric modalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源