论文标题
Lauricella弦散射幅度及其确切的SL(K+3,C)对称性的最新发展
Recent developments of the Lauricella string scattering amplitudes and their exact SL(K+3,C) Symmetry
论文作者
论文摘要
在这篇综述中,我们提出了一种新的观点,以证明弦理论的高能量对称性的粗略猜想。我们在26d开放的骨弦理论中回顾了三个Tachyons和一个任意弦状态的精确弦散射幅度(SSA)或Lauricella SSA(LSSA)的确切弦散射幅度(SSA)。这些LSSA形成SL(K+3,C)组的无限尺寸表示。此外,我们表明SL(K+3,C)组可用于求解所有LSSA并以一个幅度表示它们。作为在硬散射极限中的应用,LSSA可用于直接证明总体猜想,该猜想先前通过零范数(ZNS)的方法进行了纠正和证明。最后,精确的LSSA可用于重新降低SSA在Regge散射极限中与相关的SL(5,C)对称性的复发关系,以及与最近发现的相关SL(4,C)在非同性散射极限的非同性散射极限(包括质量和旋转依赖的弦BCJ关系)的扩展复发关系(包括质量和旋转依赖的弦BCJ关系)。
In this review we propose a new perspective to demonstrate Gross conjecture on high energy symmetry of string theory. We review the construction of the exact string scattering amplitudes (SSA) of three tachyons and one arbitrary string state, or the Lauricella SSA (LSSA), in the 26D open bosonic string theory. These LSSA form an infinite dimensional representation of the SL(K+3,C) group. Moreover, we show that the SL(K+3,C) group can be used to solve all the LSSA and express them in terms of one amplitude. As an application in the hard scattering limit, the LSSA can be used to directly prove Gross conjecture which was previously corrected and proved by the method of decoupling of zero norm states (ZNS). Finally, the exact LSSA can be used to rederive the recurrence relations of SSA in the Regge scattering limit with associated SL(5,C) symmetry and the extended recurrence relations (including the mass and spin dependent string BCJ relations) in the nonrelativistic scattering limit with associated SL(4,C) symmetry discovered recently.