论文标题

一种快速迭代算法,用于近乎基因的特征值问题

A fast iterative algorithm for near-diagonal eigenvalue problems

论文作者

Kenmoe, Maseim, Kriemann, Ronald, Smerlak, Matteo, Zadorin, Anton S.

论文摘要

我们引入了一种新型的特征值算法,该算法是受瑞利 - schrödinger扰动理论启发的近乎基因矩阵的,并称为迭代扰动理论(IPT)。与标准的特征值算法相反,这些算法要么是“直接”(计算所有特征台)或“迭代”(仅计算几个),IPT计算了具有相同基本迭代过程的任何数量的特征。由于这种完美的并行性,IPT比经典方法(用于全光谱问题的Lapack或Cusolver,对极端特征值的戴维森求解器)更有效。我们提供了足够的线性收敛条件,并在致密和稀疏的测试矩阵上(包括量子化学的一个)表现出表现。

We introduce a novel eigenvalue algorithm for near-diagonal matrices inspired by Rayleigh-Schrödinger perturbation theory and termed Iterative Perturbative Theory (IPT). Contrary to standard eigenvalue algorithms, which are either 'direct' (to compute all eigenpairs) or 'iterative' (to compute just a few), IPT computes any number of eigenpairs with the same basic iterative procedure. Thanks to this perfect parallelism, IPT proves more efficient than classical methods (LAPACK or CUSOLVER for the full-spectrum problem, preconditioned Davidson solvers for extremal eigenvalues). We give sufficient conditions for linear convergence and demonstrate performance on dense and sparse test matrices, including one from quantum chemistry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源