论文标题

反式时间对称扩散系统中特殊点的Rabi振荡

Rabi oscillations at the exceptional point in anti-parity-time symmetric diffusive systems

论文作者

Gonzalez, Gabriel

论文摘要

该理论论文的动机来自最近的一个热耦合环的传热系统,这些热耦合环朝相反的方向旋转,其角速度相等,这些速度相等,这些速度具有抗差异(APT)对称性。理论模型预测在特定旋转速度的对称性破坏过程中的静止运动温度分布相变。在这项工作中,我们表明该系统在相应的非汉密尔顿煤层的特征值和特征值中表现出平均时间($ \ MATHCAL {PT} $)相变。我们通过分析地在特殊点上解决了热扩散系统,并表明人们可以通过改变环的半径来通过相变,从而分离了不间断和破碎的相。在不间断的$ \ Mathcal {pt} $对称的情况下,温度曲线在特殊点显示了湿的Rabi振荡。我们的结果揭示了系统在热扩散系统中特殊点的行为。

The motivation for this theoretical paper comes from recent experiments of a heat transfer system of two thermally coupled rings rotating in opposite directions with equal angular velocities that present anti-parity-time (APT) symmetry. The theoretical model predicted a rest-to-motion temperature distribution phase transition during the symmetry breaking for a particular rotation speed. In this work we show that the system exhibits a parity-time ($\mathcal{PT}$) phase transition at the exceptional point in which eigenvalues and eigenvectors of the corresponding non-Hermitian Hamiltonian coalesce. We analytically solve the heat diffusive system at the exceptional point and show that one can pass through the phase transition that separates the unbroken and broken phases by changing the radii of the rings. In the case of unbroken $\mathcal{PT}$ symmetry the temperature profiles exhibit damped Rabi oscillations at the exceptional point. Our results unveils the behavior of the system at the exceptional point in heat diffusive systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源