论文标题

在t检验上

On the T-test

论文作者

Novak, S. Y.

论文摘要

$ t $检验可能是最受欢迎的统计测试。教科书通常建议它。测试的适用性取决于正常或学生近似对学生统计$ \,T_N $的分配的有效性。但是,后一个假设的有效期不如假设。我们表明,即使在类$ \,{\ cal p} _n \ $中,正常或学生对$ \,$也不均匀地保持$,$也不均匀地保持。我们向相应的误差提出下限。非参数测试不适用于类$ \,{\ cal p} _n \的样本,这一事实似乎是第一次建立。这意味着$ t $ - 检验可能会产生误导,不应以目前的形式推荐。我们建议对测试的概括,以使可能的限制/近似分布变异到$ \,(t_n)$。

The $T$-test is probably the most popular statistical test; it is routinely recommended by the textbooks. The applicability of the test relies upon the validity of normal or Student's approximation to the distribution of Student's statistic $\,t_n$. However, the latter assumption is not valid as often as assumed. We show that normal or Student's approximation to $\,Ł(t_n)\,$ does not hold uniformly even in the class $\,{\cal P}_n\,$ of samples from zero-mean unit-variance bounded distributions. We present lower bounds to the corresponding error. The fact that a non-parametric test is not applicable uniformly to samples from the class $\,{\cal P}_n\,$ seems to be established for the first time. It means the $T$-test can be misleading, and should not be recommended in its present form. We suggest a generalisation of the test that allows for variability of possible limiting/approximating distributions to $\,Ł(t_n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源