论文标题
社会福利网络设计
Network Design for Social Welfare
论文作者
论文摘要
在本文中,我们考虑了网络游戏中网络设计的问题。我们研究了基础网络的邻接矩阵中的条件,以设计游戏,以使NASH平衡与社会最佳距离一致。我们提供了满足这种情况的线性二次游戏的示例。此外,我们确定了使用变异不平等公式提供唯一解决方案的邻接矩阵属性条件,并验证网络扰动下社会成本的稳健性和连续性。最后,我们评论了个人合理性和结果扩展到大型随机网络游戏。
In this paper, we consider the problem of network design on network games. We study the conditions on the adjacency matrix of the underlying network to design a game such that the Nash equilibrium coincides with the social optimum. We provide the examples for linear quadratic games that satisfy this condition. Furthermore, we identify conditions on properties of adjacency matrix that provide a unique solution using variational inequality formulation, and verify the robustness and continuity of the social cost under perturbations of the network. Finally we comment on individual rationality and extension of our results to large random networked games.