论文标题
迈向全自动漫画翻译
Towards Fully Automated Manga Translation
论文作者
论文摘要
我们解决了日本漫画的机器翻译问题。漫画翻译涉及机器翻译中的两个重要问题:上下文感知和多模式翻译。由于文本和图像以漫画中的非结构化方式混合在一起,因此从图像中获得上下文对于漫画翻译至关重要。但是,如何从图像中提取上下文并集成到MT模型仍然是一个开放的问题。此外,目前无法使用训练和评估该模型的语料库和基准测试。在本文中,我们做出以下四项贡献,确定了漫画翻译研究的基础。首先,我们提出多模式上下文感知的翻译框架。我们是第一个合并从漫画图像获得的上下文信息的人。它使我们能够在不使用上下文信息的情况下翻译语音气泡中无法翻译的文本(例如,其他语音气泡中的文本,扬声器的性别等)。其次,为了训练模型,我们提出了从成对的原始漫画及其翻译的自动语料库结构的方法,可以通过无需任何手动标记即可构建大型平行语料库。第三,我们创建了一个新的基准来评估漫画翻译。最后,除了提出的方法外,我们设计了一个全自动漫画翻译的第一个综合系统。
We tackle the problem of machine translation of manga, Japanese comics. Manga translation involves two important problems in machine translation: context-aware and multimodal translation. Since text and images are mixed up in an unstructured fashion in Manga, obtaining context from the image is essential for manga translation. However, it is still an open problem how to extract context from image and integrate into MT models. In addition, corpus and benchmarks to train and evaluate such model is currently unavailable. In this paper, we make the following four contributions that establishes the foundation of manga translation research. First, we propose multimodal context-aware translation framework. We are the first to incorporate context information obtained from manga image. It enables us to translate texts in speech bubbles that cannot be translated without using context information (e.g., texts in other speech bubbles, gender of speakers, etc.). Second, for training the model, we propose the approach to automatic corpus construction from pairs of original manga and their translations, by which large parallel corpus can be constructed without any manual labeling. Third, we created a new benchmark to evaluate manga translation. Finally, on top of our proposed methods, we devised a first comprehensive system for fully automated manga translation.