论文标题
双极流体模型的松弛极限
The relaxation limit of bipolar fluid models
论文作者
论文摘要
这项工作确定了从双极欧拉 - 波森系统到双极漂移扩散系统的放松限制,以使后者具有光滑的解决方案。为双极流体系统开发了相对的能量同一性,并用于表明双极欧拉 - 偏见系统的耗散性弱解在高摩擦状态中收敛到强大的,并从双极漂移 - 延伸系统的真空溶液中界定。
This work establishes the relaxation limit from the bipolar Euler-Poisson system to the bipolar drift-diffusion system, for data so that the latter has a smooth solution. A relative energy identity is developed for the bipolar fluid system and is used to show that a dissipative weak solution of the bipolar Euler-Poisson system converges in the high-friction regime to a strong and bounded away from vacuum solution of the bipolar drift-diffusion system.