论文标题
Drinfeld-Lau在纤维类别上下降
Drinfeld-Lau Descent over Fibered Categories
论文作者
论文摘要
令$ {\ mathcal x} $为有限字段$ \ mathbb {f} _q $的groupoid类别,然后让$ k $为一个代数封闭的字段,其中包含$ \ mathbb {f} _q $。用$ ϕ_k \ cOLON {\ MATHCAL X} _K \ to {\ MATHCAL X} _K $ $ {\ MATHCAL X} _K/K $的算术frobenius,并假设$ {\ Mathcal M} $是$ \ MATHBBBBBBBBBBBBB \ f}的$ {\ MATHCAL M} $。然后有一个天然函子$α_ {{\ Mathcal m},{\ Mathcal X}}} \ Colon {\ Mathcal M} {\ Mathcal M}({\ Mathcal X})\ to {\ Mathcal M} m}({\ Mathbf d_k}({\ Mathcal X}))$是$ ϕ_k $ -invariant maps $ {\ Mathcal X} _K \ to {\ Mathcal m} $的类别。 Drinfeld的引理版本指出,如果$ {\ Mathcal X} $是一种投影方案,而$ {\ Mathcal M} $是有限陈述的Quasi-coherent sheaves的堆叠,则$α_ {{\ Mathcal M},{\ Mathcal M},{\ Mathcal X} $是等价的。 我们将此结果扩展到多个方向。对于适当的代数堆栈或Aggine Gerbes $ {\ Mathcal X} $,我们证明了Drinfeld的引理,并推断出$α_ {{\ Mathcal M},{\ Mathcal M},{\ Mathcal X}} $是非常一般的Algebraic stacks $ {\ Maths $} $ {\ Math的非常等同的。 对于任意$ {\ Mathcal X} $,我们表明$α_ {{\ Mathcal m},{\ Mathcal x}} $是一个等价的,当$ {\ Mathcal m} $是浸入的堆叠的堆栈,与Quasi-Compactate的分离分开或任何分离的埃特尔(Quast)分开的埃姆(quaste)或任何分离的埃特尔(e)。对角线。
Let ${\mathcal X}$ be a category fibered in groupoids over a finite field $\mathbb{F}_q$, and let $k$ be an algebraically closed field containing $\mathbb{F}_q$. Denote by $ϕ_k\colon {\mathcal X}_k\to {\mathcal X}_k$ the arithmetic Frobenius of ${\mathcal X}_k/k$ and suppose that ${\mathcal M}$ is a stack over $\mathbb{F}_q$ (not necessarily in groupoids). Then there is a natural functor $α_{{\mathcal M},{\mathcal X}}\colon{\mathcal M}({\mathcal X})\to{\mathcal M}({\mathbf D_k}({\mathcal X}))$, where ${\mathcal M}({\mathbf D_k}({\mathcal X}))$ is the category of $ϕ_k$-invariant maps ${\mathcal X}_k\to {\mathcal M}$. A version of Drinfeld's lemma states that if ${\mathcal X}$ is a projective scheme and ${\mathcal M}$ is the stack of quasi-coherent sheaves of finite presentation, then $α_{{\mathcal M},{\mathcal X}}$ is an equivalence. We extend this result in several directions. For proper algebraic stacks or affine gerbes ${\mathcal X}$, we prove Drinfeld's lemma and deduce that $α_{{\mathcal M},{\mathcal X}}$ is an equivalence for very general algebraic stacks ${\mathcal M}$. For arbitrary ${\mathcal X}$, we show that $α_{{\mathcal M},{\mathcal X}}$ is an equivalence when ${\mathcal M}$ is the stack of immersions, the stack of quasi-compact separated étale morphisms or any quasi-separated Deligne-Mumford stack with separated diagonal.