论文标题
使用机器学习的大气成像组件的多通道自动校准
Multi-Channel Auto-Calibration for the Atmospheric Imaging Assembly using Machine Learning
论文作者
论文摘要
太阳活动在影响地球周围的星际介质和空间天气方面起着典型的作用。船上遥感仪器通过测量磁场和从多层,多热和动态的太阳能大气中的光发射来提供有关太阳活动的信息。太空的极端紫外线(EUV)波长观察有助于理解太阳外层的微妙之处,即色层和电晕。不幸的是,这样的仪器,例如NASA的太阳动力学天文台(SDO)上的大气成像组件(AIA),遭受时间依赖性的降解,从而降低了它们的敏感性。当前的最新校准技术依赖于周期性的发声火箭,这对于深空任务来说可能是很不常见的,而且相当不可行。我们提出了一种基于卷积神经网络(CNN)的替代校准方法。我们使用SDO-AIA数据进行分析。我们的结果表明,基于CNN的模型可以在合理的准确度中全面地重现Sounding Rocket实验的结果,这表明与当前技术相比,其性能同样好。此外,与标准的“天文学技术”基线模型的比较表明,CNN方法显着胜过该基线。我们的方法建立了一种新型技术来校准EUV仪器的框架,并促进我们对不同EUV通道之间跨渠道关系的理解。
Solar activity plays a quintessential role in influencing the interplanetary medium and space-weather around the Earth. Remote sensing instruments onboard heliophysics space missions provide a pool of information about the Sun's activity via the measurement of its magnetic field and the emission of light from the multi-layered, multi-thermal, and dynamic solar atmosphere. Extreme UV (EUV) wavelength observations from space help in understanding the subtleties of the outer layers of the Sun, namely the chromosphere and the corona. Unfortunately, such instruments, like the Atmospheric Imaging Assembly (AIA) onboard NASA's Solar Dynamics Observatory (SDO), suffer from time-dependent degradation, reducing their sensitivity. Current state-of-the-art calibration techniques rely on periodic sounding rockets, which can be infrequent and rather unfeasible for deep-space missions. We present an alternative calibration approach based on convolutional neural networks (CNNs). We use SDO-AIA data for our analysis. Our results show that CNN-based models could comprehensively reproduce the sounding rocket experiments' outcomes within a reasonable degree of accuracy, indicating that it performs equally well compared with the current techniques. Furthermore, a comparison with a standard "astronomer's technique" baseline model reveals that the CNN approach significantly outperforms this baseline. Our approach establishes the framework for a novel technique to calibrate EUV instruments and advance our understanding of the cross-channel relation between different EUV channels.