论文标题
SR兴奋剂及其含义在TB2BANIO5中销毁多效性的起源
Origin of destruction of multiferroicity in Tb2BaNiO5 by Sr doping and its implications
论文作者
论文摘要
正骨霍尔丹烷自旋链化合物TB2BANIO5(Neel Order,TN1 = 63 K)已被证明是下面的一个异国情调的多性系统系统(TN2)25 K,这是由于各种迷人的特征,这表明了该领域概念促进概念的强大潜力。特别是,稀土离子在许多其他众所周知的多效材料中起着直接的决定性作用,并且似乎存在关键的倾斜角,在TN2以下发展,由TB 4F和Ni 3D矩触发,以触发这种交叉耦合现象。但是,对于BA的SR少量替代,即。在TB2BA0.9SR0.1NIO5中,据报道铁电性被破坏,但在(TN1)55 K和(TN2)14 K处保留磁性特征。在本文中,我们通过中子衍射研究和密度的功能性理论计算来解决该SR掺杂系统中多发性抑制的起源。我们发现,与TB2BANIO5不同,TN2周围磁矩的相对倾斜角没有明显的变化,并且该参数的绝对值降至2 K,无法超过父母指出的临界值,从而解释了SR量化材料中磁电量的破坏的起源。这一发现给出了强烈的支持,即至少在某些情况下,除了作为用于应用程序应用多种材料的途径外,至少在某些情况下,至少在某些情况下可能会诱发多种表皮。
The orthorhombic Haldane spin chain compound Tb2BaNiO5 (Neel order, TN1= 63 K) has been shown to be an exotic multiferroic system below (TN2) 25 K due to various fascinating features, pointing to a strong potential for the advancement of concepts in this field. In particular, the rare-earth ions play a direct decisive role unlike in many other well known multiferroic materials and there appears to be a critical canting angle, developing below TN2, subtended by Tb 4f and Ni 3d moments to trigger this cross coupling phenomenon. However, for a small replacement of Sr for Ba, viz. in Tb2Ba0.9Sr0.1NiO5, ferroelectricity was reported to get destroyed, but retaining magnetic features at (TN1) 55 K and (TN2) 14 K. In this article, we address the origin of suppression of multiferrocity in this Sr doped system through neutron diffraction studies and density functional theory calculations. We find that, unlike in Tb2BaNiO5, there is no pronounced change in the relative canting angle of the magnetic moments around TN2 and that the absolute value of this parameter down to 2 K fails to exceed the critical value noted for the parent, thereby explaining the origin of destruction of magnetoelectric coupling in the Sr doped material. This finding renders strong support to the proposal of possible existence of critical canting angle, at least in some cases, to induce multiferroicity, apart from serving as a route to engineer multiferroic materials for applications.