论文标题
具有与某些广义Q积分运算符相关的圆锥域的分析功能
Analytic functions with conic domains associated with certain generalized q-integral operator
论文作者
论文摘要
在本文中,我们通过使用某些常规$ q $ - 积分运算符,定义了$ k $ - 均匀的恒星函数的新子类。我们通过将其与圆锥域连接起来,探索该类函数的几何解释。我们还研究了$ Q $ - 富度的系数条件,$ Q $ -Fekete-Szegö不平等,$ Q $ -Bieberbach-de Branges类型系数系数估计和此类功能的半径问题。我们通过使用广义$ q $ integral运算符引入了$ k $均匀凸出订单$γ$的类似子类的结论。我们省略了该新类的结果,因为它们可以直接从我们的主要班级的相应结果中转换。
In this paper, we define a new subclass of $k$-uniformly starlike functions of order $γ,\ (0\leqγ<1)$ by using certain generalized $q$-integral operator. We explore geometric interpretation of the functions in this class by connecting it with conic domains. We also investigate $q$-sufficient coefficient condition, $q$-Fekete-Szegö inequalities, $q$-Bieberbach-De Branges type coefficient estimates and radius problem for functions in this class. We conclude this paper by introducing an analogous subclass of $k$-uniformly convex functions of order $γ$ by using the generalized $q$-integral operator. We omit the results for this new class because they can be directly translated from the corresponding results of our main class.