论文标题
长短投资组合优化的深度加固学习
Deep Reinforcement Learning for Long-Short Portfolio Optimization
论文作者
论文摘要
随着人工智能的快速发展,数据驱动的方法有效地克服了传统投资组合优化的局限性。常规模型主要采用长期的机制,不包括高度相关的资产来多样化风险。但是,合并卖空可以通过对冲相关资产来实现低风险套利。本文构建了深厚的加强学习(DRL)投资组合管理框架,其近似机制符合实际的交易规则,探索了中国A股票市场中超额回报的策略。关键创新包括:(1)在连续交易中开发全面的短销售机制,该机制解释了整个时间段内交易的动态演变; (2)长短优化框架的设计集成了深层神经网络,用于处理具有平均夏普比率奖励功能的多维财务时间序列。经验结果表明,卖空的DRL模型表明了显着的优化能力,在回测期间实现了一致的正回报。与传统方法相比,该模型可提供较高的风险调整后收益,同时减少最大缩水量。从分配的角度来看,DRL模型建立了强大的投资风格,通过战略避免表现不佳的资产和平衡的资本分配来增强防御能力。这项研究为投资组合理论做出了贡献,同时为定量投资实践提供了新颖的方法。
With the rapid development of artificial intelligence, data-driven methods effectively overcome limitations in traditional portfolio optimization. Conventional models primarily employ long-only mechanisms, excluding highly correlated assets to diversify risk. However, incorporating short-selling enables low-risk arbitrage through hedging correlated assets. This paper constructs a Deep Reinforcement Learning (DRL) portfolio management framework with short-selling mechanisms conforming to actual trading rules, exploring strategies for excess returns in China's A-share market. Key innovations include: (1) Development of a comprehensive short-selling mechanism in continuous trading that accounts for dynamic evolution of transactions across time periods; (2) Design of a long-short optimization framework integrating deep neural networks for processing multi-dimensional financial time series with mean Sharpe ratio reward functions. Empirical results show the DRL model with short-selling demonstrates significant optimization capabilities, achieving consistent positive returns during backtesting periods. Compared to traditional approaches, this model delivers superior risk-adjusted returns while reducing maximum drawdown. From an allocation perspective, the DRL model establishes a robust investment style, enhancing defensive capabilities through strategic avoidance of underperforming assets and balanced capital allocation. This research contributes to portfolio theory while providing novel methodologies for quantitative investment practice.