论文标题

在正特征中动态莫德尔·兰特猜想的稀疏性结果

A sparsity result for the Dynamical Mordell-Lang Conjecture in positive characteristic

论文作者

Ghioca, Dragos, Ostafe, Alina, Saleh, Sina, Shparlinski, Igor E.

论文摘要

我们证明了一个定量的部分结果,以支持阳性特征中动态的mordell-lang猜想(也称为DML猜想)。更准确地说,我们显示以下内容:给定特征性$ p $的字段$ k $,鉴于在有限的子字段上定义了$ k $的semiabelian品种$ x $,并具有定期的自动映射$φ:x \ longrightArrow x $定义在$ k $上定义的x $,给定x(k)$ s subvariety $ v \ subsee s subsee seleteq x x $ k $ selete x $整数$ n $使得$φ^n(α)\ in V(k)$是有限的许多算术进步的结合,以及子集$ s $与该物业的属性$ a $ a $ a $ a $(仅$ n $,$ n $,$φ$,$ a $,$α$,$ v $),因为每个正面的$ m $ $ m $,我们wayd $ $ n poste $ $ n poss $ n posteger unte $ n posteger unte $ $ n west us。 s \ colon〜n \ le m \ right \} \ le a \ cdot \ left(1+ \ log m \ right)^{\ dim v}。$$

We prove a quantitative partial result in support of the Dynamical Mordell-Lang Conjecture (also known as the DML conjecture) in positive characteristic. More precisely, we show the following: given a field $K$ of characteristic $p$, given a semiabelian variety $X$ defined over a finite subfield of $K$ and endowed with a regular self-map $Φ:X \longrightarrow X$ defined over $K$, given a point $α\in X(K)$ and a subvariety $V\subseteq X$, then the set of all non-negative integers $n$ such that $Φ^n(α)\in V(K)$ is a union of finitely many arithmetic progressions along with a subset $S$ with the property that there exists a positive real number $A$ (depending only on $N$, $Φ$, $α$, $V$) such that for each positive integer $M$, we have $$\#\left\{n\in S\colon~ n\le M\right\}\le A\cdot \left(1+\log M\right)^{\dim V}.$$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源