论文标题
总和度量
Anticodes in the Sum-Rank Metric
论文作者
论文摘要
我们研究了任意尺寸的任意字段和基质块的总和度量中的二脚架的结构。我们的主要结果是对最佳线性抗体的完整分类。我们还比较了总和度量中的球的基数与最佳线性抗模板的基数,这表明后者在足够大的有限磁场上严格较大。最后,我们提供了最大抗模板的参数示例
We study the structure of anticodes in the sum-rank metric for arbitrary fields and matrix blocks of arbitrary sizes. Our main result is a complete classification of optimal linear anticodes. We also compare the cardinality of the ball in the sum-rank metric with that of an optimal linear anticode, showing that the latter is strictly larger over sufficiently large finite fields. Finally, we give examples of parameters for which the largest anticode is neither a ball nor a linear anticode