论文标题
散射在de保姆空间的静态斑块中
Scattering in the static patch of de Sitter space
论文作者
论文摘要
我们研究了de de Sitter空间的静态斑块中的散射问题,即De Sitter观察者的过去和未来视野之间的田间演变问题。我们计算出与立方相互作用的绝小无质量标量的前阶散射,这是最简单的情况,也是对阳米尔和重力的热身。我们的策略是将静态斑点进化问题分解为两个庞孔康贴片中的一对更对称的进化问题,并通过空间反演缝合在一起。为了明确执行此操作,我们最终开发了公式,以实现平面时空反转的动量空间效应。从狄拉克旋转器中的电子的4摩托姆和旋转矢量的几何结构证明非常相关。
We study the scattering problem in the static patch of de Sitter space, i.e. the problem of field evolution between the past and future horizons of a de Sitter observer. We calculate the leading-order scattering for a conformally massless scalar with cubic interaction, as both the simplest case and a warmup towards Yang-Mills and gravity. Our strategy is to decompose the static-patch evolution problem into a pair of more symmetric evolution problems in two Poincare patches, sewn together by a spatial inversion. To carry this out explicitly, we end up developing formulas for the momentum-space effect of inversions in flat spacetime. The geometric construction of an electron's 4-momentum and spin vectors from a Dirac spinor turns out to be surprisingly relevant.