论文标题
通过贴片重建的不连续的盖尔金方法,用于对流 - 扩散反应问题,而不是多型网眼
A discontinuous Galerkin method by patch reconstruction for convection-diffusion-reaction problems over polytopic meshes
论文作者
论文摘要
在本文中,使用加权离散最小二乘,我们提出了一个贴片重建有限元元素空间,每个元素的自由度只有一个自由度。作为近似空间,它将应用于与多重元网格上稳态对流 - 扩散反应问题的上风方案的不连续的盖尔金方法。最佳误差估计均以扩散为主导和以对流为主的制度提供。此外,提出了几个数值实验,以验证理论误差估计值,以及近似近似的边界层和/或内部层。
In this article, using the weighted discrete least-squares, we propose a patch reconstruction finite element space with only one degree of freedom per element. As the approximation space, it is applied to the discontinuous Galerkin methods with the upwind scheme for the steady-state convection-diffusion-reaction problems over polytopic meshes. The optimal error estimates are provided in both diffusion-dominated and convection-dominated regimes. Furthermore, several numerical experiments are presented to verify the theoretical error estimates, and to well approximate boundary layers and/or internal layers.