论文标题

心脏MRI的时空多任务学习左心室定量

Spatio-temporal Multi-task Learning for Cardiac MRI Left Ventricle Quantification

论文作者

Vesal, Sulaiman, Gu, Mingxuan, Maier, Andreas, Ravikumar, Nishant

论文摘要

心脏左心室(LV)形态的定量评估对于评估心脏功能并改善不同心血管疾病的诊断至关重要。在当前的临床实践中,LV定量取决于心肌形状指数的测量,这通常是通过手动轮廓心内膜和心外膜来实现的。但是,此过程受到间和观察者内变异性的影响,这是一项耗时且繁琐的任务。在本文中,我们提出了一种时空多任务学习方法,以获得一组量化心脏LV形态,区域壁厚度(RWT)的完整测量结果,并进一步检测了给定的3D Cine-Cine-Magnetic(MR)图像序列。我们首先使用编码器 - 编码器网络将心脏LVS分割,然后引入多任务框架来回归11 LV索引并将心脏相分类为模型优化过程中的并行任务。提出的深度学习模型基于3D时空卷积,从MR图像中提取空间和时间特征。我们使用145名受试者的Cine-MR序列证明了该方法的功效,并将其与其他最先进的定量方法进行比较。 The proposed method obtained high prediction accuracy, with an average mean absolute error (MAE) of 129 $mm^2$, 1.23 $mm$, 1.76 $mm$, Pearson correlation coefficient (PCC) of 96.4%, 87.2%, and 97.5% for LV and myocardium (Myo) cavity regions, 6 RWTs, 3 LV dimensions, and an error rate of 9.0 \%用于相分类。尽管心脏MR序列中心脏形态,图像外观和低对比度,但实验结果突出了所提出方法的鲁棒性。

Quantitative assessment of cardiac left ventricle (LV) morphology is essential to assess cardiac function and improve the diagnosis of different cardiovascular diseases. In current clinical practice, LV quantification depends on the measurement of myocardial shape indices, which is usually achieved by manual contouring of the endo- and epicardial. However, this process subjected to inter and intra-observer variability, and it is a time-consuming and tedious task. In this paper, we propose a spatio-temporal multi-task learning approach to obtain a complete set of measurements quantifying cardiac LV morphology, regional-wall thickness (RWT), and additionally detecting the cardiac phase cycle (systole and diastole) for a given 3D Cine-magnetic resonance (MR) image sequence. We first segment cardiac LVs using an encoder-decoder network and then introduce a multitask framework to regress 11 LV indices and classify the cardiac phase, as parallel tasks during model optimization. The proposed deep learning model is based on the 3D spatio-temporal convolutions, which extract spatial and temporal features from MR images. We demonstrate the efficacy of the proposed method using cine-MR sequences of 145 subjects and comparing the performance with other state-of-the-art quantification methods. The proposed method obtained high prediction accuracy, with an average mean absolute error (MAE) of 129 $mm^2$, 1.23 $mm$, 1.76 $mm$, Pearson correlation coefficient (PCC) of 96.4%, 87.2%, and 97.5% for LV and myocardium (Myo) cavity regions, 6 RWTs, 3 LV dimensions, and an error rate of 9.0\% for phase classification. The experimental results highlight the robustness of the proposed method, despite varying degrees of cardiac morphology, image appearance, and low contrast in the cardiac MR sequences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源