论文标题
300“相关器”建议4D,$ \ cal n $ = 1 SUSY是解决一组Sudoku难题的解决方案
The 300 "Correlators" Suggests 4D, $\cal N$ = 1 SUSY Is a Solution to a Set of Sudoku Puzzles
论文作者
论文摘要
提出了一个猜想,即4D的重量空间,$ \ cal n $ - 扩展的超对称表示形式嵌入了与置换组相关的permutahedra中,$ {\ mathbb {s}}} {} {} _ {d} $。与4D的最小表示相关的Adinkras和Coxeter组,$ \ cal n $ = 1超对称性提供了支持此猜想的证据。显示出4D的数学的外观,$ \ cal n $ = 1最小的外壳超对称表示形式等于在截断的八面体上解决四种颜色问题。该观察结果提出了一种完全新的方法,可以根据其算法探索$ {\ Mathbb {s}}} {} _ {d} $的属性的算法。
A conjecture is made that the weight space for 4D, $\cal N$-extended supersymmetrical representations is embedded within the permutahedra associated with permutation groups ${\mathbb{S}}{}_{d}$. Adinkras and Coxeter Groups associated with minimal representations of 4D, $\cal N$ = 1 supersymmetry provide evidence supporting this conjecture. It is shown the appearance of the mathematics of 4D, $\cal N$ = 1 minimal off-shell supersymmetry representations is equivalent to solving a four color problem on the truncated octahedron. This observation suggest an entirely new way to approach the off-shell SUSY auxiliary field problem based on IT algorithms probing the properties of ${\mathbb{S}}{}_{d}$.