论文标题
多保真贝叶斯神经网络:算法和应用
Multi-fidelity Bayesian Neural Networks: Algorithms and Applications
论文作者
论文摘要
我们提出了一类新的贝叶斯神经网络(BNN),可以使用可变忠诚度的嘈杂数据对其进行训练,我们将其应用于学习功能近似值以及基于部分微分方程(PDES)的逆问题。这些多忠诚度BNN由三个神经网络组成:第一个是完全连接的神经网络,该网络遵循最大后验概率(MAP)方法训练,以适合低保真数据;第二个是一种贝叶斯神经网络,该网络用于捕获低保真数据和高保真数据之间的不确定性量化的互相关。最后一个是物理信息的神经网络,它编码PDE所描述的物理定律。为了训练最后两个神经网络,我们使用汉密尔顿蒙特卡洛方法准确估计相应的超参数的后验分布。我们使用合成数据以及实际测量结果证明了本方法的准确性。具体而言,我们首先近似一个和四维函数,然后在一维扩散反应系统中推断反应速率。此外,我们使用卫星图像和原位测量值来推断马萨诸塞州和Cape Cod海湾中的海面温度(SST)。综上所述,我们的结果表明,目前的方法可以自适应地捕获低含量和高含量数据之间的线性和非线性相关性,识别PDE中的未知参数,并量化预测中的不确定性,给定一些散布的噪声噪声高效率数据。最后,我们证明我们可以有效,有效地减少不确定性,从而通过主动学习方法提高预测准确性,并用作示例特定的一维函数近似和逆PDE问题。
We propose a new class of Bayesian neural networks (BNNs) that can be trained using noisy data of variable fidelity, and we apply them to learn function approximations as well as to solve inverse problems based on partial differential equations (PDEs). These multi-fidelity BNNs consist of three neural networks: The first is a fully connected neural network, which is trained following the maximum a posteriori probability (MAP) method to fit the low-fidelity data; the second is a Bayesian neural network employed to capture the cross-correlation with uncertainty quantification between the low- and high-fidelity data; and the last one is the physics-informed neural network, which encodes the physical laws described by PDEs. For the training of the last two neural networks, we use the Hamiltonian Monte Carlo method to estimate accurately the posterior distributions for the corresponding hyperparameters. We demonstrate the accuracy of the present method using synthetic data as well as real measurements. Specifically, we first approximate a one- and four-dimensional function, and then infer the reaction rates in one- and two-dimensional diffusion-reaction systems. Moreover, we infer the sea surface temperature (SST) in the Massachusetts and Cape Cod Bays using satellite images and in-situ measurements. Taken together, our results demonstrate that the present method can capture both linear and nonlinear correlation between the low- and high-fideilty data adaptively, identify unknown parameters in PDEs, and quantify uncertainties in predictions, given a few scattered noisy high-fidelity data. Finally, we demonstrate that we can effectively and efficiently reduce the uncertainties and hence enhance the prediction accuracy with an active learning approach, using as examples a specific one-dimensional function approximation and an inverse PDE problem.