论文标题
Orbifold $ {\ Mathbb C}^n/{\ Mathbb z} _n $上的分数黑色$ p $ -branes
Fractional black $p$-branes on orbifold ${\mathbb C}^n/{\mathbb Z}_n$
论文作者
论文摘要
最近发现在已解决的Orbifold $ {\ Mathbb C}^n/{\ Mathbb Z} _n $上明确发现了一个黑洞的解决方案,这使得可以研究Orbifold上的$ p $ branes。特别是,有可能具有合理的精确度来验证以下预测:$ {\ mathbb c}^4/{\ Mathbb z} _4 $在十一维度中,而在$ {\ Mathbb c}^3/{\ Mathbb z}^$ p $ p $ p $ p $ p p p p p $ p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p a Orbifold $ {\ Mathbb C}^n/{\ Mathbb Z} _n $。这些解决方案是极端的,具有规则的地平线$ s^{2n-1}/{\ Mathbb z} _n $,没有任何裸体奇异性,具有接近地平线的几何ads $ {} _ {p+2} \ times s^\ times s^{2n-1}/{\ mathbb z} _n $。
The recent discovery of an explicit solution of a black hole on the resolved orbifold ${\mathbb C}^n/{\mathbb Z}_n$ makes it possible to investigate the existence of $p$-branes on the orbifold. In particular, it is possible with reasonable precision to verify the prediction that an M2-brane on ${\mathbb C}^4/{\mathbb Z}_4$ in eleven dimensions and a D3-brane on ${\mathbb C}^3/{\mathbb Z}_3$ in ten dimensions have a family of black $p$-branes on the orbifold ${\mathbb C}^n/{\mathbb Z}_n$. These solutions are extremal and have regular horizons $S^{2n-1}/{\mathbb Z}_n$ without any naked singularity, with near horizon geometries AdS${}_{p+2}\times S^{2n-1}/{\mathbb Z}_n$.