论文标题

Umle:无监督的多歧视器网络,用于低光增强

UMLE: Unsupervised Multi-discriminator Network for Low Light Enhancement

论文作者

Qu, Yangyang, Chen, Kai, Liu, Chao, Ou, Yongsheng

论文摘要

低光图像增强功能,例如从低光图像中恢复颜色和纹理细节,是一项复杂而重要的任务。对于自动驾驶,弱光场景将对基于视觉的应用产生严重影响。为了解决这个问题,我们提出了一个无监督的生成对抗网络(GAN),其中包含多个歧视因子,即多尺度歧视器,纹理歧视器和颜色歧视器。这些独特的歧视者允许从不同的角度评估图像。此外,考虑到不同的通道功能包含不同的信息,并且图像中的照明不均匀,我们提出了一个功能融合注意模块。该模块将通道注意力与像素注意机制结合在一起,以提取图像特征。此外,为了减少培训时间,我们采用了一个共享的编码器,为发电机和歧视者采用了共享的编码器。这使得模型的结构更加紧凑,训练更稳定。实验表明,我们的方法优于定性和定量评估的最新方法,并且可以为自动驾驶定位和检测结果实现显着改进。

Low-light image enhancement, such as recovering color and texture details from low-light images, is a complex and vital task. For automated driving, low-light scenarios will have serious implications for vision-based applications. To address this problem, we propose a real-time unsupervised generative adversarial network (GAN) containing multiple discriminators, i.e. a multi-scale discriminator, a texture discriminator, and a color discriminator. These distinct discriminators allow the evaluation of images from different perspectives. Further, considering that different channel features contain different information and the illumination is uneven in the image, we propose a feature fusion attention module. This module combines channel attention with pixel attention mechanisms to extract image features. Additionally, to reduce training time, we adopt a shared encoder for the generator and the discriminator. This makes the structure of the model more compact and the training more stable. Experiments indicate that our method is superior to the state-of-the-art methods in qualitative and quantitative evaluations, and significant improvements are achieved for both autopilot positioning and detection results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源