论文标题
Q-SR:用于段路由的可扩展优化框架
Q-SR: An Extensible Optimization Framework for Segment Routing
论文作者
论文摘要
段路由(SR)结合了由集中式软件定义网络(SDN)范式支持的源路由的优势和在分布式IP网络基础结构中应用的逐跳路由。但是,由于计算效率低下,几乎不可能使用常规方法通过多个段从SR中评估是否会从SR中受益。在本文中,我们提出了一种灵活的$ Q $ -SR模型及其配方,以从算法的角度完全探索SR的潜力。该模型导致一个高度可扩展的框架,以设计和评估可以适应各种网络拓扑和流量矩阵的算法。对于离线设置,我们开发了一个完全多项式时间近似方案(FPTA),该方案可以找到$(1+ω)$ - 近似解决方案,对于任何指定的$ω> 0 $的时间,这是网络大小的多项式函数。据我们所知,拟议的FPTA是可以计算任意准确解决方案的第一种算法。对于在线设置,我们开发了一种在线原始二次算法,该算法证明了$ o(1)$ - 竞争性,并违反链接容量为$ O(\ log n)$,其中$ n $是节点编号。我们还证明了所提出的算法的性能界限。我们在离线和在线方案中验证验证SR参数和算法参数的现实拓扑模拟。
Segment routing (SR) combines the advantages of source routing supported by centralized software-defined networking (SDN) paradigm and hop-by-hop routing applied in distributed IP network infrastructure. However, because of the computation inefficiency, it is nearly impossible to evaluate whether various types of networks will benefit from the SR with multiple segments using conventional approaches. In this paper, we propose a flexible $Q$-SR model as well as its formulation in order to fully explore the potential of SR from an algorithmic perspective. The model leads to a highly extensible framework to design and evaluate algorithms that can be adapted to various network topologies and traffic matrices. For the offline setting, we develop a fully polynomial time approximation scheme (FPTAS) which can finds a $(1+ω)$-approximation solution for any specified $ω>0$ in time that is a polynomial function of the network size. To the best of our knowledge, the proposed FPTAS is the first algorithm that can compute arbitrarily accurate solution. For the online setting, we develop an online primal-dual algorithm that proves $O(1)$-competitive and violates link capacities by a factor of $O(\log n)$, where $n$ is the node number. We also prove performance bounds for the proposed algorithms. We conduct simulations on realistic topologies to validate SR parameters and algorithmic parameters in both offline and online scenarios.