论文标题

越野动力学低可见性环境中的低延迟感知

Low-latency Perception in Off-Road Dynamical Low Visibility Environments

论文作者

Alves, Nelson, Ruiz, Marco, Reis, Marco, Cajahyba, Tiago, Oliveira, Davi, Barreto, Ana, Filho, Eduardo F. Simas, de Oliveira, Wagner L. A., Schnitman, Leizer, Monteiro, Roberto L. S.

论文摘要

这项工作提出了一种针对自动驾驶汽车和高级驾驶员帮助的感知系统,专门研究未铺设的道路和越野环境。在这项研究中,作者研究了应用于越野环境的语义分割和未铺设的道路的深度学习算法的行为。收集并标记了近12,000张不同的未铺设和越野环境的图像。它是专门为其发展而汇集的越野证明基础。所提出的数据集还包含许多不利的情况,例如雨,灰尘和低光。为了开发系统,我们使用了经过训练的卷积神经网络,以分割汽车可以通过的障碍物和区域。我们开发了一个可配置的模块化细分网络(CMSNET)框架,以帮助创建不同的体系结构布置并在建议的数据集中对其进行测试。此外,我们还通过使用Tensorrt,C ++和CUDA删除和融合许多层来移植一些CMSNET配置,以实现嵌入式实时推理并允许现场测试。这项工作的主要贡献是:一个新的数据集,用于未铺砌的道路和越野环境,其中包含许多不利条件,例如夜晚,雨水和灰尘; CMSNET框架;关于应用深度学习来检测区域可以通过轨道没有明确边界时可以通过的区域的可行性的调查;一项研究我们提出的分割算法在不同严重程度的可见性障碍中的行为如何;以及对用于实时推理的语义分割体系结构进行的现场测试的评估。

This work proposes a perception system for autonomous vehicles and advanced driver assistance specialized on unpaved roads and off-road environments. In this research, the authors have investigated the behavior of Deep Learning algorithms applied to semantic segmentation of off-road environments and unpaved roads under differents adverse conditions of visibility. Almost 12,000 images of different unpaved and off-road environments were collected and labeled. It was assembled an off-road proving ground exclusively for its development. The proposed dataset also contains many adverse situations such as rain, dust, and low light. To develop the system, we have used convolutional neural networks trained to segment obstacles and areas where the car can pass through. We developed a Configurable Modular Segmentation Network (CMSNet) framework to help create different architectures arrangements and test them on the proposed dataset. Besides, we also have ported some CMSNet configurations by removing and fusing many layers using TensorRT, C++, and CUDA to achieve embedded real-time inference and allow field tests. The main contributions of this work are: a new dataset for unpaved roads and off-roads environments containing many adverse conditions such as night, rain, and dust; a CMSNet framework; an investigation regarding the feasibility of applying deep learning to detect region where the vehicle can pass through when there is no clear boundary of the track; a study of how our proposed segmentation algorithms behave in different severity levels of visibility impairment; and an evaluation of field tests carried out with semantic segmentation architectures ported for real-time inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源