论文标题
在有限的视野传感器下分布式多对象跟踪
Distributed Multi-object Tracking under Limited Field of View Sensors
论文作者
论文摘要
我们考虑使用传感器分布式网络跟踪多个对象的挑战性问题。在有限的视野(FOV),计算能力和通信资源的节点的实际环境中,我们开发了一种新颖的分布式多对象跟踪算法。为此,我们首先将标签一致性的概念形式化,确定足够的条件来实现它并开发出一种新颖的\ textIt {标签共识方法},从而减少了由对象的运动从一个节点的有限fov到另一个的标签不一致。其次,我们开发了一种分布式的多对象融合算法,该算法融合了局部多对象状态估计而不是局部多对象密度。该算法:i)与多对象密度融合方法相比,处理时间要少得多; ii)通过考虑在多次扫描而不是单个扫描的最佳子图(OSPA)跟踪错误来实现更好的跟踪准确性; iii)对本地多对象跟踪技术是不可知论的,并且仅要求每个节点提供一组估计的轨道。因此,不必假设节点保持多对象密度,因此融合结果不会改变局部多对象密度。数值实验证明了我们所提出的解决方案的实时计算效率和准确性与具有挑战性的情况下的最新解决方案相比。我们还在https://github.com/adelaideauto-idlab/distributed-limitedfov-mot上发布源代码,以促进DMOT算法中的开发。
We consider the challenging problem of tracking multiple objects using a distributed network of sensors. In the practical setting of nodes with limited field of views (FoVs), computing power and communication resources, we develop a novel distributed multi-object tracking algorithm. To accomplish this, we first formalise the concept of label consistency, determine a sufficient condition to achieve it and develop a novel \textit{label consensus approach} that reduces label inconsistency caused by objects' movements from one node's limited FoV to another. Second, we develop a distributed multi-object fusion algorithm that fuses local multi-object state estimates instead of local multi-object densities. This algorithm: i) requires significantly less processing time than multi-object density fusion methods; ii) achieves better tracking accuracy by considering Optimal Sub-Pattern Assignment (OSPA) tracking errors over several scans rather than a single scan; iii) is agnostic to local multi-object tracking techniques, and only requires each node to provide a set of estimated tracks. Thus, it is not necessary to assume that the nodes maintain multi-object densities, and hence the fusion outcomes do not modify local multi-object densities. Numerical experiments demonstrate our proposed solution's real-time computational efficiency and accuracy compared to state-of-the-art solutions in challenging scenarios. We also release source code at https://github.com/AdelaideAuto-IDLab/Distributed-limitedFoV-MOT for our fusion method to foster developments in DMOT algorithms.