论文标题
自动化手术PEG转移:深度学习的校准可以超过人类的速度,准确性和一致性
Automating Surgical Peg Transfer: Calibration with Deep Learning Can Exceed Speed, Accuracy, and Consistency of Humans
论文作者
论文摘要
PEG转移是腹腔镜手术基本面(FLS)的著名手术训练任务。虽然人类Sur-Geons telecorperate机器人(例如Da Vinci)以高速和准确的态度执行此任务,但自动化的挑战是具有挑战性的。本文使用DA Vinci研究试剂盒(DVRK)手术机器人和一个zivived的深度传感器提出了一种新型的系统和控制方法,并且人类受试者的研究比较了PEG转移任务的三种变体的性能:单侧,双边双边无手柄,并具有手持式。该系统结合了3D打印,深度感测和深度学习,以通过新的分析逆运动模型和时间最少的运动控制器进行校准。在该系统,专家手术居民和9名志愿者的3384个PEG转移试验的对照研究中,结果表明,该系统与经验丰富的手术居民相当,并且比外科手术居民和志愿者更快,更一致。该系统还表现出最高的一致性和最低的碰撞速率。据我们所知,这是第一个在标准化手术任务上实现超人表现的自主系统。
Peg transfer is a well-known surgical training task in the Fundamentals of Laparoscopic Surgery (FLS). While human sur-geons teleoperate robots such as the da Vinci to perform this task with high speed and accuracy, it is challenging to automate. This paper presents a novel system and control method using a da Vinci Research Kit (dVRK) surgical robot and a Zivid depth sensor, and a human subjects study comparing performance on three variants of the peg-transfer task: unilateral, bilateral without handovers, and bilateral with handovers. The system combines 3D printing, depth sensing, and deep learning for calibration with a new analytic inverse kinematics model and a time-minimized motion controller. In a controlled study of 3384 peg transfer trials performed by the system, an expert surgical resident, and 9 volunteers, results suggest that the system achieves accuracy on par with the experienced surgical resident and is significantly faster and more consistent than the surgical resident and volunteers. The system also exhibits the highest consistency and lowest collision rate. To our knowledge, this is the first autonomous system to achieve superhuman performance on a standardized surgical task.