论文标题

使用概率置信区域估算驾驶员目光从头部位置和方向估算

Estimation of Driver's Gaze Region from Head Position and Orientation using Probabilistic Confidence Regions

论文作者

Jha, Sumit, Busso, Carlos

论文摘要

智能车辆应该能够理解人类的行为并预测其行为以避免危险情况。可以自动预测人类行为的特定特征,这可以帮助车辆做出决定,提高安全性。与驾驶任务有关的最重要方面之一是驾驶员的视觉关注。预测驾驶员的视觉关注可以帮助车辆了解驾驶员的意识状态,从而提供重要的上下文信息。尽管在汽车环境中估算确切的目光方向很困难,但可以通过跟踪头部的位置和方向来获得对视觉注意的粗略估计。由于头姿势和凝视方向之间的关系不是一对一,因此本文提出了一种基于概率模型的公式,以创建描述驱动程序视觉注意力的显着区域。当模型对预测具有很高的置信度时,预测区域的面积很小,这是直接从数据中学到的。我们使用高斯过程回归(GPR)来实施框架,将性能与不同的回归公式(例如线性回归和基于神经网络的方法)进行比较。我们通过研究使用UTDRIVE平台收集的自然录音来研究空间分辨率和概率图的准确性之间的权衡来评估这些框架。我们观察到,GPR方法可产生最佳的结果,从而通过局部明显区域产生准确的预测。例如,95%的置信区域由覆盖驾驶员周围球体3.77%区域的区域定义。

A smart vehicle should be able to understand human behavior and predict their actions to avoid hazardous situations. Specific traits in human behavior can be automatically predicted, which can help the vehicle make decisions, increasing safety. One of the most important aspects pertaining to the driving task is the driver's visual attention. Predicting the driver's visual attention can help a vehicle understand the awareness state of the driver, providing important contextual information. While estimating the exact gaze direction is difficult in the car environment, a coarse estimation of the visual attention can be obtained by tracking the position and orientation of the head. Since the relation between head pose and gaze direction is not one-to-one, this paper proposes a formulation based on probabilistic models to create salient regions describing the visual attention of the driver. The area of the predicted region is small when the model has high confidence on the prediction, which is directly learned from the data. We use Gaussian process regression (GPR) to implement the framework, comparing the performance with different regression formulations such as linear regression and neural network based methods. We evaluate these frameworks by studying the tradeoff between spatial resolution and accuracy of the probability map using naturalistic recordings collected with the UTDrive platform. We observe that the GPR method produces the best result creating accurate predictions with localized salient regions. For example, the 95% confidence region is defined by an area that covers 3.77% region of a sphere surrounding the driver.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源