论文标题

3D远程随机跳模型的实验实现

Experimental realization of a 3D long-range random hopping model

论文作者

Lippe, Carsten, Klas, Tanita, Bender, Jana, Mischke, Patrick, Niederprüm, Thomas, Ott, Herwig

论文摘要

随机性和混乱对量子系统中的运输过程产生了强烈的影响,并引起现象,例如安德森本地化[1-3],多体定位[4]或玻璃动力学[5]。因此,它们的特征取决于混乱的力量和类型。一个重要的类是跳跃模型,其中粒子或激发通过具有随机耦合的系统移动。这包括旋转玻璃[5],耦合的光学波导[6]或NV中心阵列[7]。它们也是了解分子和生物系统(例如光收集复合物)中激发传输的关键[8]。在许多系统中,微观耦合机制由偶极 - 偶极相互作用提供。因此,Rydberg Systems [9]是研究随机跳跃模型的自然候选人。在这里,我们实验研究了具有随机偶极偶极联轴的三维多体rydberg系统。我们测量多体系统的频谱,并与有效的自旋模型找到良好的一致性。我们还发现定位 - 迁移转变的光谱特征。我们的结果为在随机跳跃模型中研究运输过程和本地化现象的方式铺平了道路。在实验上,包含强相关性是直接的,它将允许研究强烈相互作用系统中随机跳跃与定位之间的相互作用。

Randomness and disorder have strong impact on transport processes in quantum systems and give rise to phenomena such as Anderson localization [1-3], many-body localization [4] or glassy dynamics [5]. Their characteristics thereby depend on the strength and type of disorder. An important class are hopping models, where particles or excitations move through a system which has randomized couplings. This includes, e.g., spin glasses [5], coupled optical waveguides [6], or NV center arrays [7]. They are also key to understand excitation transport in molecular and biological systems, such as light harvesting complexes [8]. In many of those systems, the microscopic coupling mechanism is provided by the dipole-dipole interaction. Rydberg systems [9] are therefore a natural candidate to study random hopping models. Here, we experimentally study a three-dimensional many-body Rydberg system with random dipole-dipole couplings. We measure the spectrum of the many-body system and find good agreement with an effective spin model. We also find spectroscopic signatures of a localization-delocalization transition. Our results pave the way to study transport processes and localization phenomena in random hopping models in detail. The inclusion of strong correlations is experimentally straightforward and will allow to study the interplay between random hopping and localization in strongly interacting systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源