论文标题
通过模块化网络和任务驱动的先验有效的持续学习
Efficient Continual Learning with Modular Networks and Task-Driven Priors
论文作者
论文摘要
持续学习中的现有文献(CL)的重点是克服灾难性遗忘,学习者无法回忆起如何执行过去观察到的任务。但是,CL系统还有其他理想的属性,例如能够从先前任务传输知识,并根据任务数量进行缩放和计算。由于当前大多数基准测试仅着重于忘记使用短的任务流,因此我们首先提出了一套新的基准测试套件,以探测这些新轴上的CL算法。最后,我们介绍了一种新的模块化体系结构,其模块代表可以构成某个任务的原子技能。学习任务可以减少以找出要重复使用的过去模块,以及要实例化以解决当前任务的新模块。我们的学习算法利用了任务驱动的先验,这是所有可能的方法的指数搜索空间结合模块的方法,从而可以在长时间的任务流上有效学习。我们的实验表明,这种模块化体系结构和学习算法在广泛使用的CLENCHAND上具有竞争性的性能,同时在我们在这项工作中引入的更具挑战性的基准测试中产生了出色的性能。
Existing literature in Continual Learning (CL) has focused on overcoming catastrophic forgetting, the inability of the learner to recall how to perform tasks observed in the past. There are however other desirable properties of a CL system, such as the ability to transfer knowledge from previous tasks and to scale memory and compute sub-linearly with the number of tasks. Since most current benchmarks focus only on forgetting using short streams of tasks, we first propose a new suite of benchmarks to probe CL algorithms across these new axes. Finally, we introduce a new modular architecture, whose modules represent atomic skills that can be composed to perform a certain task. Learning a task reduces to figuring out which past modules to re-use, and which new modules to instantiate to solve the current task. Our learning algorithm leverages a task-driven prior over the exponential search space of all possible ways to combine modules, enabling efficient learning on long streams of tasks. Our experiments show that this modular architecture and learning algorithm perform competitively on widely used CL benchmarks while yielding superior performance on the more challenging benchmarks we introduce in this work.