论文标题
标签不是完美的:在对象检测中推断空间不确定性
Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection
论文作者
论文摘要
许多现实世界驾驶数据集的可用性是对象检测算法在自动驾驶中最近进步的关键原因。但是,由于容易出错的注释过程或传感器观察噪声,对象标签中存在歧义甚至失败。当前的公共对象检测数据集仅提供确定性对象标签而无需考虑其固有的不确定性,而对象检测器的常见训练过程或评估指标也是如此。结果,不同对象检测方法之间的深入评估仍然具有挑战性,并且对象检测器的训练过程是最佳的,尤其是在概率对象检测中。在这项工作中,我们根据生成模型从LIDAR点云中推断出边界框标签的不确定性,并通过空间不确定性分布来定义概率边界框的新表示。全面的实验表明,所提出的模型反映了激光雷达感知和标签质量的复杂环境噪声。此外,我们将Jaccard iou(jiou)作为一种新的评估指标,通过结合标签不确定性来扩展IOU。我们使用JIOU指标对几个基于LIDAR的对象检测器进行了深入的比较。最后,我们将提出的标签不确定性纳入损失函数中,以训练概率对象检测器并提高其检测准确性。我们在两个公共数据集(Kitti,Waymo)以及仿真数据上验证了我们提出的方法。代码在https://bit.ly/2W534YO上发布。
The availability of many real-world driving datasets is a key reason behind the recent progress of object detection algorithms in autonomous driving. However, there exist ambiguity or even failures in object labels due to error-prone annotation process or sensor observation noise. Current public object detection datasets only provide deterministic object labels without considering their inherent uncertainty, as does the common training process or evaluation metrics for object detectors. As a result, an in-depth evaluation among different object detection methods remains challenging, and the training process of object detectors is sub-optimal, especially in probabilistic object detection. In this work, we infer the uncertainty in bounding box labels from LiDAR point clouds based on a generative model, and define a new representation of the probabilistic bounding box through a spatial uncertainty distribution. Comprehensive experiments show that the proposed model reflects complex environmental noises in LiDAR perception and the label quality. Furthermore, we propose Jaccard IoU (JIoU) as a new evaluation metric that extends IoU by incorporating label uncertainty. We conduct an in-depth comparison among several LiDAR-based object detectors using the JIoU metric. Finally, we incorporate the proposed label uncertainty in a loss function to train a probabilistic object detector and to improve its detection accuracy. We verify our proposed methods on two public datasets (KITTI, Waymo), as well as on simulation data. Code is released at https://bit.ly/2W534yo.