论文标题

超几何方程的贝蒂结构

Betti structures of hypergeometric equations

论文作者

Barco, Davide, Hien, Marco, Hohl, Andreas, Sevenheck, Christian

论文摘要

我们研究了汇合高几何方程的溶液复合物中的贝蒂结构。我们使用增强的Ind-Shaves和D'Agnolo-Kashiwara的不规则Riemann-Hilbert的框架。主要结果是一个组理论标准,可确保在复数的某些子场上定义此类系统的增强解决方案。该证明使用对某些劳伦(Laurent)多项式的指数扭曲的高斯 - 曼宁系统的描述。

We study Betti structures in the solution complexes of confluent hypergeometric equations. We use the framework of enhanced ind-sheaves and the irregular Riemann-Hilbert correspondence of D'Agnolo-Kashiwara. The main result is a group theoretic criterion that ensures that enhanced solutions of such systems are defined over certain subfields of the complex numbers. The proof uses a description of the hypergeometric systems as exponentially twisted Gauss-Manin systems of certain Laurent polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源