论文标题

动态平行MR图像重建的互补时频域网络

Complementary Time-Frequency Domain Networks for Dynamic Parallel MR Image Reconstruction

论文作者

Qin, Chen, Duan, Jinming, Hammernik, Kerstin, Schlemper, Jo, Küstner, Thomas, Botnar, René, Prieto, Claudia, Price, Anthony N., Hajnal, Joseph V., Rueckert, Daniel

论文摘要

目的:通过学习互补的时频域网络,引入一种基于深度学习的新型方法,用于快速和高质量的动态多型MR重建,该网络可以从互补域中同时利用时空相关性。 理论和方法:动态平行的MR图像重建是一个多变量最小化问题,其中数据在合并的时间傅立叶和空间(X-F)结构域以及时空图像(X-T)域中正规化。得出了基于可变拆分技术的迭代算法,该算法在X-F和X-T空间中的信号去敏化步骤中交替,封闭形式的数据一致性步骤和加权耦合步骤。迭代模型嵌入了一个深层的复发神经网络中,该网络学会通过利用互补域中的时空冗余来恢复图像。 结果:在两个高度不足的多圈心脏心脏Cine MRI扫描的数据集上进行了实验。结果表明,我们提出的方法在定量和定性上都优于当前的最新方法。所提出的模型还可以很好地推广到从不同的扫描仪中获取的数据,以及具有在训练集中没有看到的病理学的数据。 结论:这项工作显示了与深层神经网络互补的时频域中重建动态平行MRI的好处。该方法可以通过快速重建速度(2.8s)的高度采样动态多线圈数据($ 16 \ times $ and $ 16 \ times $ and $ 16 \ times $和$ 24 \ times $)从高度不足的动态多线圈数据($ 16 \ times $和$ 24 \ times $产生15s和10s扫描时间)中有效,可靠地重建高质量的图像。这有可能有助于实现快速的单呼吸临床2D心脏电影成像。

Purpose: To introduce a novel deep learning based approach for fast and high-quality dynamic multi-coil MR reconstruction by learning a complementary time-frequency domain network that exploits spatio-temporal correlations simultaneously from complementary domains. Theory and Methods: Dynamic parallel MR image reconstruction is formulated as a multi-variable minimisation problem, where the data is regularised in combined temporal Fourier and spatial (x-f) domain as well as in spatio-temporal image (x-t) domain. An iterative algorithm based on variable splitting technique is derived, which alternates among signal de-aliasing steps in x-f and x-t spaces, a closed-form point-wise data consistency step and a weighted coupling step. The iterative model is embedded into a deep recurrent neural network which learns to recover the image via exploiting spatio-temporal redundancies in complementary domains. Results: Experiments were performed on two datasets of highly undersampled multi-coil short-axis cardiac cine MRI scans. Results demonstrate that our proposed method outperforms the current state-of-the-art approaches both quantitatively and qualitatively. The proposed model can also generalise well to data acquired from a different scanner and data with pathologies that were not seen in the training set. Conclusion: The work shows the benefit of reconstructing dynamic parallel MRI in complementary time-frequency domains with deep neural networks. The method can effectively and robustly reconstruct high-quality images from highly undersampled dynamic multi-coil data ($16 \times$ and $24 \times$ yielding 15s and 10s scan times respectively) with fast reconstruction speed (2.8s). This could potentially facilitate achieving fast single-breath-hold clinical 2D cardiac cine imaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源