论文标题

如何解决更高的喷气式飞机分辨率

How to GAN Higher Jet Resolution

论文作者

Baldi, Pierre, Blecher, Lukas, Butter, Anja, Collado, Julian, Howard, Jessica N., Keilbach, Fabian, Plehn, Tilman, Kasieczka, Gregor, Whiteson, Daniel

论文摘要

LHC处的QCD-JET通过简单的物理原理描述。我们展示了超分辨率生成网络如何学习基础结构并使用它们来改善喷气图像的分辨率。我们在无质量QCD-JET和脂肪上流喷纸上测试了这种方法,发现网络即使没有在纯样品上进行训练,也可以重现其主要功能。此外,我们展示了一旦​​控制了完整的网络性能,如何构建细长的网络体系结构。

QCD-jets at the LHC are described by simple physics principles. We show how super-resolution generative networks can learn the underlying structures and use them to improve the resolution of jet images. We test this approach on massless QCD-jets and on fat top-jets and find that the network reproduces their main features even without training on pure samples. In addition, we show how a slim network architecture can be constructed once we have control of the full network performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源