论文标题
通过乐队工程增强了超导电路的连贯性
Enhanced coherence in superconducting circuits via band engineering
论文作者
论文摘要
在约瑟夫森连接中断的超导电路中,通过Aharonov-Casher效应,能量光谱对不同岛屿上的偏移电荷的依赖性为$ 2E,并且类似于反映Josephson潜能的对称性的晶体带结构。我们表明,由$ \ cos(2φ)$能量期关系描述的更高谐波的约瑟夫森元素为量身定制了约瑟夫森势和设计光谱的形状,提供了更多的自由度,其中包含了扁平带和电荷布里尔鲁因区域中的多重点。扁平带提供不噪音的量子状态,并且频带工程可以帮助提高系统的连贯性。我们讨论了磁通量量子的修改版本,该版本原则上没有电荷噪声的反应性,并引入了通量QUTRIT,该量子量子显示了一个旋转的dirac频谱,并且同时引用了充电和磁通噪声的强大引用。
In superconducting circuits interrupted by Josephson junctions, the dependence of the energy spectrum on offset charges on different islands is $2e$ periodic through the Aharonov-Casher effect and resembles a crystal band structure that reflects the symmetries of the Josephson potential. We show that higher-harmonic Josephson elements described by a $\cos(2φ)$ energy-phase relation provide an increased freedom to tailor the shape of the Josephson potential and design spectra featuring multiplets of flat bands and Dirac points in the charge Brillouin zone. Flat bands provide noise-insensitive quantum states, and band engineering can help improve the coherence of the system. We discuss a modified version of a flux qubit that achieves in principle no decoherence from charge noise and introduce a flux qutrit that shows a spin-one Dirac spectrum and is simultaneously quote robust to both charge and flux noise.